Human-Al Cooperation for Fairness Elicitation

Cyrus Cousins, Chang Zeng

What is the Justifiable Fairness Concept?

What's the best way to allocate the funds?

Options\Groups			
New Campus Bike Path	8	3	10
Residential Hall Renovation	4	8	8
More Solar Panels	5	10	5

Utilitarian

Nash

Egalitarian

Power Mean (Generalized Mean)

Justifiable Fairness Concepts can be represented by Power Mean (p)!

Groups (G)			
Utility (s)	8	3	10
Weights (w) $(\ \mathbf{w}\ _1 = 1)$	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

Power Mean Welfare	Power Mean Welfare
(Unweighted) (P = 1)	(Weighted) (P = 1)
$M_{1}\left(\langle 8, 3, 10 \rangle; \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle\right) = \sqrt[1]{\frac{1}{3}(81 + 31 + 10^{1})} = 7$	$M_{1}\left(\langle 8, 3, 10 \rangle; \langle \frac{1}{5}, \frac{3}{5}, \frac{2}{5} \rangle\right) = \sqrt{\frac{1}{5}8^{1} + \frac{3}{5}3^{1} + \frac{1}{5}10^{1}} = 5.4$

$$M_p(\mathbf{s}; \mathbf{w}) = \sqrt{\sum_{i=1}^g \mathbf{w}_i \mathbf{s}_i^p}$$

Special Cases:

•
$$M_0(s; w) = \prod_{i=1}^g s_i^{w_i}$$

•
$$M_{\infty}(\mathbf{s}; \mathbf{w}) = \max_{1 < i < g} \mathbf{s}_i$$

•
$$M_{\infty}(\mathbf{s}; \mathbf{w}) = \max_{1 < i < g} \mathbf{s}_i$$

• $M_{-\infty}(\mathbf{s}; \mathbf{w}) = \min_{1 < i < g} \mathbf{s}_i$

Power Mean - Fairness Concept

Options\Groups		.	
New Campus Bike Path	8	3	10
Residential Hall Renovation	4	8	8
More Solar Panels	5	10	5

For the simplicity, assume uniform weights for groups.

Options\Type	Utilitarian (P = 1)	Nash (P = 0)	Egalitarian (P = $-\infty$)
New Campus Bike Path	$\sqrt[1]{\frac{1}{3}(81+31+10^1)}=7$	$(8*3*10)^{\frac{1}{3}} \approx 6.2145$	min(8, 3, 10) = 3
Residential Hall Renovation	$\sqrt[1]{\frac{1}{3}(4^1+8^1+8^1)} \approx 6.7$	$(4*8*8)^{\frac{1}{3}} \approx 6.3496$	min(4, 8, 8) = 4
More Solar Panels	$\sqrt[1]{\frac{1}{3}(5^1 + 10^1 + 5^1)} \approx 6.7$	$(5*10*5)^{\frac{1}{3}} \approx 6.2996$	min(5, 10, 5) = 5

Why Power Mean

Previous work: An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning

Distance Between Power Mean Fairness Concepts

What does it even mean to measure distance between fairness concepts?

Intuitive Solution:

Difference between welfare given same sentiment value and probability measure!

$$|\mathbf{M}_{p_{\uparrow}}(\mathbf{s}; \mathbf{w}) - \mathbf{M}_{p_{\downarrow}}(\mathbf{s}; \mathbf{w})|$$

Distance Between Power Mean Fairness Concepts

$$|\mathbf{M}_1(\mathbf{s}; \mathbf{w}) - \mathbf{M}_{-\infty}(\mathbf{s}; \mathbf{w})|$$

Options\Groups			
New Campus Bike Path	8	3	10
More Solar Panels	5	10	5

For the simplicity, assume uniform weights for groups.

New Campus Bike Path	More Solar Panels
$\left M_{1}\left(\langle 8, 3, 10 \rangle; \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle\right) - M_{-\infty}\left(\langle 8, 3, 10 \rangle; \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle\right) \right $ $= \sqrt[1]{\frac{1}{3}(8^{1} + 3^{1} + 10^{1})} - \min(8, 3, 10) = 4$	$\left M_{1}\left(\langle 5, 10, 5 \rangle; \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle\right) - M_{-\infty}\left(\langle 5, 10, 5 \rangle; \langle \frac{1}{3}, \frac{1}{3}, \frac{1}{3} \rangle\right) \right $ $= \sqrt[1]{\frac{1}{3}(5^{1} + 10^{1} + 5^{1})} - \min(5, 10, 5) \approx 1.7$

Distance Between Power Mean Fairness Concepts

$$\Delta(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \sup_{\mathbf{s} \in [0,1]^g} |\mathbf{M}_{p_{\uparrow}}(\mathbf{s}; \mathbf{w}) - \mathbf{M}_{p_{\downarrow}}(\mathbf{s}; \mathbf{w})|$$

Properties:

- Triangle Inequality
- Symmetric
- Positive-Definiteness
 - \circ F(x, y) = 0 iff x = y
 - \circ $F(x, y) \ge 0$

 ${\mathcal M}$: Justifiable Fairness Concept Set

 M^* : Human Cardinal Fairness Concept

Query: $M^*(s; w) > M^*(s'; w')$?

 ${\mathcal M}\;$: Justifiable Fairness Concept Set

 $\mathcal{M}^{\mathcal{C}}$: Concordant Fairness Concept Set

M*: Human Cardinal Fairness Concept

Query: $M^*(s; w) > M^*(s'; w')$?

 ${\mathcal M}$: Justifiable Fairness Concept Set

 $\mathcal{M}^{\mathcal{C}}$: Concordant Fairness Concept Set

M*: Human Cardinal Fairness Concept

Query: $M^*(s; w) > M^*(s'; w')$?

 ${\mathcal M}$: Justifiable Fairness Concept Set

 $\mathcal{M}^{\mathcal{C}}$: Concordant Fairness Concept Set

 M^* : Human Cardinal Fairness Concept

ε : Error Tolerance

Recap & Our Contribution

We have introduced:

• Power Mean Fairness Concept *p*

 $\left(\mathbf{M}_{p}(\mathbf{s}; \mathbf{w}) = \sqrt[p]{\sum_{i=1}^{g} \mathbf{w}_{i} \mathbf{s}_{i}^{p}}\right)$

• Distance Metric on Power Mean Fairness Concept.

$$(\Delta(p_{\uparrow},p_{\downarrow};w))$$

Our Contribution for this work are:

- Upper bound on the distance between Power Mean Fairness Concept. $(\Delta_{\uparrow}(p_{\uparrow}, p_{\downarrow}; w))$
- Search Algorithms on the Justifiable Fairness Concepts set.

Intuition of Upper Bounds

$$\Delta(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \sup_{s \in [0,1]^g} |\mathbf{M}_{p_{\uparrow}}(s; \mathbf{w}) - \mathbf{M}_{p_{\downarrow}}(s; \mathbf{w})|$$

$$\left(\mathbf{M}_{p}(s; \mathbf{w}) = \sqrt[p]{\sum_{i=1}^g \mathbf{w}_i s_i^p}\right)$$

How to compute supremum?

 $\Delta(p_{\uparrow},p_{\downarrow};w)$ obeys Triangle Inequality (Unable to upper bound time/query complexity)

Optimal Continuous Anti-Triangular Symmetric Bound

$$\sup |f(a) - f(b)| + \sup |f(b) - f(c)| \ge \sup |f(a) - f(c)|$$

$$\lim_{h\to 0}\sup_{s\in[0,1]^g}\left|\mathbf{M}_{p_\downarrow+h}(\boldsymbol{s};\boldsymbol{w})-\mathbf{M}_{p_\downarrow}(\boldsymbol{s};\boldsymbol{w})\right|+\sup_{s\in[0,1]^g}\left|\mathbf{M}_{p_\downarrow+2h}(\boldsymbol{s};\boldsymbol{w})-\mathbf{M}_{p_\downarrow+h}(\boldsymbol{s};\boldsymbol{w})\right|+\cdots$$

Optimal Continuous Anti-Triangular Symmetric Bound

$$\lim_{h\to 0}\sup_{s\in[0,1]^g}\left|\mathsf{M}_{p_\downarrow+h}(s;\boldsymbol{w})-\mathsf{M}_{p_\downarrow}(s;\boldsymbol{w})\right|+\sup_{s\in[0,1]^g}\left|\mathsf{M}_{p_\downarrow+2h}(s;\boldsymbol{w})-\mathsf{M}_{p_\downarrow+h}(s;\boldsymbol{w})\right|+\cdots$$

$$\lim_{h\to 0} \frac{\sum_{i=1}^{p_{\uparrow}-p_{\downarrow}} \sup_{s\in[0,1]^g} \left| \mathcal{M}_{p_{\downarrow}+ih}(s;w) - \mathcal{M}_{p_{\downarrow}+(i-1)h}(s;w) \right|}{h} * h$$

$$\left| \int_{p_{\downarrow}}^{p_{\uparrow}} \sup_{s \in [0,1]^g} \frac{\mathrm{d}}{\mathrm{d}p} [\mathrm{M}_p(\mathbf{s}; \mathbf{w})] \mathrm{d}p \right|$$

Optimal Continuous Anti-Triangular Symmetric Bound

$$\Delta(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \sup_{\mathbf{s} \in [0,1]^g} \left| \int_{p_{\downarrow}}^{p_{\uparrow}} \frac{\mathrm{d}}{\mathrm{d}p} [M_p(\mathbf{s}; \mathbf{w})] \mathrm{d}p \right|$$

$$\Delta_{\uparrow}^*(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \left| \int_{p_{\downarrow}}^{p_{\uparrow}} \sup_{\mathbf{s} \in [0,1]^g} \frac{\mathrm{d}}{\mathrm{d}p} [M_p(\mathbf{s}; \mathbf{w})] \mathrm{d}p \right|$$

Properties:

- Additive (Most Important !!)
- Symmetric
- Positive-Definiteness
 - \circ F(x, y) = 0 iff x = y
 - $F(x, y) \ge 0$

Upper Bounds on Power Mean

Upper bounds on Power Mean Fairness Concepts:

- $\Delta_{\uparrow}(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \frac{1}{e} \ln \frac{p_{\uparrow}}{p_{\downarrow}}$, for any $p_{\uparrow}, p_{\downarrow} > 0$
- $\Delta_{\uparrow}(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \left(\frac{p_{\uparrow} p_{\downarrow}}{p_{\uparrow} p_{\downarrow}}\right) \ln \frac{1}{\mathbf{w}_{\min}}$, for any $p_{\uparrow} p_{\downarrow} > 0$

Extreme case $(p = \pm \infty)$:

- $\Delta_{\uparrow}(p_{\uparrow}, -\infty; \mathbf{w}) = -\frac{1}{p_{\uparrow}} \ln \left(\frac{1}{w_{\min}} \right)$

(log ratio)

(harmonic difference)

 $(\boldsymbol{w}_{\min} = \min_{1 \le i \le g} \boldsymbol{w}_i)$

Require Starting Interval
Power Mean Fairness Concept

$$[p_{\downarrow}, p_{\uparrow}]$$
$$p \in [-\infty, \infty]$$

Unbounded Binary Search

р7

8q

p2

p3

p4

p5 p* p6

p0

Unbounded Binary Search

Power Mean Fairness Concept Also Require Starting points

$$p \in [-\infty, \infty]$$

$$p_0 \in \pm 1, p_d \in \pm 1, p_\infty \in \{0, \pm \infty\}$$

Conclusion

We have presented:

Upper bound on the distance between Power Mean Fairness Concept.

$$\triangle_{\uparrow}^{*}(p_{\uparrow}, p_{\downarrow}; \boldsymbol{w}) \doteq \left| \int_{p_{\downarrow}}^{p_{\uparrow}} \sup_{s \in [0,1]^{g}} \frac{\mathrm{d}}{\mathrm{d}p} [\mathrm{M}p(\boldsymbol{s}; \boldsymbol{w})] \mathrm{d}p \right|$$
 (Optimal Continuous Anti-Triangular Symmetric Bound)
$$\triangle_{\uparrow}(p_{\uparrow}, p_{\downarrow}; \boldsymbol{w}) \doteq \frac{1}{e} \ln \frac{p_{\uparrow}}{p_{\downarrow}}, \text{ for any } p_{\uparrow}, p_{\downarrow} > 0$$
 (log ratio)
$$\triangle_{\uparrow}(p_{\uparrow}, p_{\downarrow}; \boldsymbol{w}) \doteq \left(\frac{p_{\uparrow} - p_{\downarrow}}{p_{\uparrow} p_{\downarrow}}\right) \ln \frac{1}{w_{\min}}, \text{ for any } p_{\uparrow} p_{\downarrow} > 0$$
 (harmonic difference)
$$(\boldsymbol{w}_{\min} = \min_{1 \leq i \leq a} \boldsymbol{w}_{i})$$

Search Algorithms on the Justifiable Fairness Concepts set.

Thank You

Constraint on Sentiment Value

$$\Delta(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \sup_{\mathbf{s} \in [0,1]^g} |\mathsf{M}_{p_{\uparrow}}(\mathbf{s}; \mathbf{w}) - \mathsf{M}_{p_{\downarrow}}(\mathbf{s}; \mathbf{w})|$$

$$\Delta'(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \sup_{\mathbf{s} \in [0,\alpha]^g} |\mathsf{M}_{p_{\uparrow}}(\mathbf{s}; \mathbf{w}) - \mathsf{M}_{p_{\downarrow}}(\mathbf{s}; \mathbf{w})|$$

$$M_p(\alpha s; w) = \alpha M_p(s; w) \rightarrow \Delta(p_{\uparrow}, p_{\downarrow}; w) = \alpha \Delta'(p_{\uparrow}, p_{\downarrow}; w)$$

Composite Δ_{\uparrow} **Function**

Harmonic difference, $\left(\frac{p_{\uparrow}-p_{\downarrow}}{p_{\uparrow}p_{\downarrow}}\right)\ln\frac{1}{w_{\min}}$, depends on weights

What happen if w_{\min} too small? Super loose bound!!

Compositing log ratio and harmonic difference bound together:

$$(w_{\min} = \min_{1 \le i \le g} w_i, \ \tilde{p} = e \ln \frac{1}{w_{\min}})$$

$$\Delta_{\uparrow}(p_{\uparrow}, p_{\downarrow}; \mathbf{w}) \doteq \begin{cases} \left(\frac{p_{\uparrow} - p_{\downarrow}}{p_{\uparrow} p_{\downarrow}}\right) \ln \frac{1}{\mathbf{w}_{\min}} & \tilde{p} \leq p_{\downarrow} \\ \frac{1}{e} \ln \frac{p_{\uparrow}}{p_{\downarrow}} & \tilde{p} \geq p_{\uparrow} \\ \left(\frac{p_{\uparrow} - \tilde{p}}{p_{\uparrow} p_{\downarrow}}\right) \ln \frac{1}{\mathbf{w}_{\min}} + \frac{1}{e} \ln \frac{\tilde{p}}{p_{\downarrow}} & \tilde{p} \in [p_{\downarrow}, p_{\uparrow}] \end{cases}$$

